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ABSTRACT

Modifying the pitch and timing of an audio signal are funda-
mental audio editing operations with applications in speech manip-
ulation, audio-visual synchronization, and singing voice editing and
synthesis. Thus far, methods for pitch-shifting and time-stretching
that use digital signal processing (DSP) have been favored over deep
learning approaches due to their speed and relatively higher quality.
However, even existing DSP-based methods for pitch-shifting and
time-stretching induce artifacts that degrade audio quality. In this
paper, we propose Controllable LPCNet (CLPCNet), an improved
LPCNet vocoder capable of pitch-shifting and time-stretching of
speech. For objective evaluation, we show that CLPCNet performs
pitch-shifting of speech on unseen datasets with high accuracy
relative to prior neural methods. For subjective evaluation, we
demonstrate that the quality and naturalness of pitch-shifting and
time-stretching with CLPCNet on unseen datasets meets or exceeds
competitive neural- or DSP-based approaches.
Index Terms: pitch-shifting, time-stretching, speech manipulation,
voice modification, deep learning

1. INTRODUCTION

Speech manipulation algorithms that modify the fundamental fre-
quency and duration of speech are essential for a variety of speech
editing applications, such as audio-visual synchronization, prosody
editing, auto-tuning, and voice conversion. General-purpose audio
editing software such as Pro Tools and Adobe Audition contains al-
gorithms for pitch-shifting. However, these algorithms can alter the
timbre of speech to sound unnatural. This motivates the development
of natural-sounding pitch-shifting algorithms catered to speech.

Related speech manipulation algorithms include both digital
signal processing (DSP) approaches as well as neural networks.
DSP-based approaches include TD-PSOLA [1], WORLD [2], and
STRAIGHT [3]. These methods benefit from fast inference and
accurate control, but often degrade the signal with noticeable ar-
tifacts. Prior studies [4] have shown TD-PSOLA to be preferable
over WORLD for speech manipulation, and WORLD has been
shown to be significantly preferable over STRAIGHT for speech
resynthesis [5].

Prior methods in neural pitch-shifting include Pitch-Shifting
WaveNet (PS-WaveNet) [4], Quasi-Periodic Parallel WaveGAN
(QP-PWG) [6], Unified Source-Filter GAN (uSFGAN) [7], and
Hider-Finder-Combiner (HFC) [8]. PS-WaveNet is too computa-
tionally expensive for our use case of real-time interactive editing.
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Fig. 1. Pitch-shifting with LPCNet and our proposed CLPCNet. The
target pitch is two-thirds the original pitch.

QP-PWG and uSFGAN exhibits constant-ratio pitch-shifting quality
on par with WORLD, but with worse accuracy. HFC demonstrates
variable-ratio pitch-shifting performance with worse accuracy than
WORLD, and its subjective quality is significantly degraded by
noise induced during vocoding. Only QP-PWG and uSFGAN sup-
port multiple speakers, but do not demonstrate an ability to perform
variable-rate pitch-shifting. Further, none of these works propose
methods for time-stretching. As well, our results indicate that
WORLD can perform substantially more accurate pitch shifting
than previous studies have reported [4, 6, 7, 8]. We hypothesize
that prior methods performed improper interpolation of WORLD
parameters or evaluated pitch error in unvoiced regions.

Neural vocoders are deep neural networks that convert acoustic
features (e.g., a mel-spectrogram) to a waveform. Using a neural
vocoder, we can perform speech manipulation by encoding speech
audio as acoustic features, modifying these acoustic features, and
then vocoding to produce a new waveform. Recent neural vocoders
include WaveGlow [9], Parallel WaveGAN [10], Neural Source Fil-
ter (NSF) [11], and LPCNet [12]. None of these methods address
pitch-shifting or time-stretching except LPCNet, which has been in-
formally shown to be able to perform time-stretching [13]. However,
no evaluation of time-stretching performance is provided. LPC-
Net resembles a source-filter model, which decouples the residual
(pitch and noise) and spectral (timbre) structure. Source-filter mod-
els are usually capable of pitch-shifting speech, exhibiting more nat-
ural timbre than traditional phase vocoders [14]. However, our work
demonstrates that, without modification, LPCNet does not perform
accurate pitch-shifting (Figure 1). We hypothesize this is due to three
issues: (1) limitations in the pitch representation used in LPCNet,
(2) insufficient disentanglement between pitch and acoustic features,
and (3) a lack of training data for very high- and low-pitched speech.
Kons et al. [15] sidestep these limitations by generating the input pa-
rameters using a separate neural network. However, their approach
necessitates training multiple neural networks and does not general-
ize to unseen speakers without speaker adaptation.

Rather than sidestepping these limitations, as Kons et al. do,
we directly address them to create Controllable LPCNet (CLPC-



Net), which significantly improves the synthesis quality and pitch-
shifting performance of LPCNet. In our objective evaluation, we
show that CLPCNet performs both constant- and variable-ratio
pitch-shifting and time-stretching with high accuracy on unseen
speakers and datasets. In our subjective evaluation, we show that
the quality of pitch-shifting and time-stretching with CLPCNet
meets or exceeds competitive DSP-based methods. CLPCNet also
substantially improves the quality of speech vocoding compared
to LPCNet, and permits simultaneous speech coding and speech
manipuation. Code is available under an open-source license at
https://github.com/maxrmorrison/clpcnet.1

2. LPCNET

LPCNet [12] is a neural vocoder that models each sample of a
speech signal as the sum of a deterministic term (the prediction) and
a stochastic term (the excitation). The prediction is computed via
linear predictive coding (LPC) [16], where LPC coefficients are de-
rived from Bark-frequency cepstral coefficients (BFCCs). LPCNet
autoregressively predicts the parameters of a categorical distribution
over 8-bit mu-law-encoded excitation values.

2.1. Architecture

LPCNet consists of two subnetworks: the frame-rate and sample-
rate networks. The frame-rate network consists of a pitch embed-
ding layer followed by two 1D convolution layers with tanh activa-
tions and two dense layers with tanh activations. The sample-rate
network consists of an embedding layer for sample-rate features fol-
lowed by two gated recurrent units (GRUs) with sigmoid and soft-
max activations, respectively. The frame-rate network takes as in-
put the YIN [17] pitch, pitch correlation [18] (henceforth referred
to as periodicity), and 18-dimensional BFCCs with a hop size of 10
milliseconds and produces a 128-dimensional embedding for each
frame. The sample-rate network takes four inputs: (1) the previ-
ously generated excitation, (2) the previous sample value, (3) the
current prediction value (see previous paragraph), and (4) the output
of the last layer of the frame-rate network after nearest neighbors
upsampling.

2.2. Time-stretching

The time resolutions of the sample-rate and frame-rate networks
are related by upsampling factor k; for every frame processed by
the frame-rate network, the sample-rate network produces k sam-
ples without overlap between frames. LPCNet can perform time-
stretching by using a variable-rate hop size kf on a per-frame ba-
sis. For example, if a phoneme is spoken for 100 milliseconds (10
frames), we can stretch the phoneme to 200 milliseconds by decod-
ing twice as many samples from each frame.

3. CONTROLLABLE LPCNET

While LPCNet achieves competitive audio quality and time-stretching
performance, it is unable to perform accurate pitch-shifting (see Fig-
ure 1). Below, we elaborate on our hypothesis of the three issues
prohibiting pitch-shifting in LPCNet (see Section 1) and propose
solutions to these issues. In addition, we propose a simplification of
the sampling procedure of LPCNet (see Section 3.3).

1Audio examples are available at https://main.d3ee4zjxcj59ad.
amplifyapp.com/.

3.1. Pitch representation

We identify two issues with the pitch representation used in LPC-
Net. First, pitch values are encoded as the number of samples per
period. This design makes pitch bins perceptually uneven; higher
frequencies are coarsely sampled, with some bin widths exceeding
50 cents. Given 8-bit quantization at a sample rate of 16 kHz, the
minimum representable frequency is 63 Hz, which prohibits model-
ing very low-pitched voices. We propose a quantization of the fre-
quency range 50-550 Hz that is equally spaced in base-2 log-scale,
which makes the width of each bin 16.3 cents.

Second, the YIN pitch and periodicity exhibit significant noise,
which harms the performance of LPCNet. Therefore, we use
CREPE [19] (specifically torchcrepe [20]) to extract the pitch
and periodicity. CREPE outputs a distribution over quantized pitch
values over time. We apply Viterbi decoding [21] to extract a smooth
pitch trajectory, which reduces half and double frequency errors. We
dither the extracted pitch with random noise drawn from a triangu-
lar distribution centered at zero, with width equal to two CREPE
pitch bins (i.e., 40 cents). This reduces quantization error without
increasing the noise floor [22]. Our CREPE periodicity measure is
the sequence of probabilities associated with the pitch bins selected
by Viterbi decoding. CREPE normalizes each frame of input audio,
making it invariant to amplitude. This causes low-bit noise to be
labeled as periodic during silent regions. We avoid this by setting the
periodicity to zero in frames where the A-weighted loudness [23] is
less than -60 dB, relative to a reference of 20 dB. Our periodicity
measure has a correlation of .82 with the periodicity measure of
YIN, and visual inspection indicates that our representation contains
significantly less noise (see companion website). This indicates that
CREPE learns a representation of speech periodicity at least as good
as autocorrelation-based methods.

3.2. Data augmentation

We perform training with a much larger dataset than the original
LPCNet (see Section 4.1). For this reason, we omit the original data
augmentation, which includes random biquad filtering, volume aug-
mentation, and noise injection. Instead, we propose a novel augmen-
tation to improve pitch-shifting performance.

High-accuracy pitch-shifting with a neural network requires that
the input pitch representation is disentangled from other features
(e.g., the BFCCs). As well, values close to 50 or 550 Hz are rarely
found within speech datasets, which prohibits the network from
learning to pitch-shift to these values. We propose a resampling data
augmentation to better disentangle pitch features from the BFCCs
and allow pitch-shifting of speech to pitch values not seen in the
training data. Let φ(∗; a, b) be a function that resamples a signal
from sampling rate a to sampling rate b. Given speech signal x
with original sampling rate s, target sampling rate t = 16000,
and constant pitch shift factor r, we augment training data with
xr = φ(φ(x; rs, s); s, t) for values of r in [ 1

2
, 2
3
, 3
4
, 4
5
, 5
4
, 4
3
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Performing pitch-shifting at the original sampling rate ensures that
we do not lose high-frequency information when downsampling.
This resampling method significantly modifies the speech formants.
We hypothesize that this encourages the model to disentangle pitch
from the representation of formants within the BFCCs.

3.3. Sampling excitation values

The original LPCNet samples excitation values with sampling tem-
perature dependent on the periodicity. We instead use a constant
sampling temperature of 1, which we find performs equivalently
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when the amount of training data is sufficiently large. We retain
the thresholding of the distribution at small values. Let p(et = c)
for c = 1, . . . , 256 be the predicted 256-dimensional categorical
distribution over mu-law-encoded excitation values. Let Pt,c =
max[0, p(et = c)−T ], where T is a constant threshold. We sample
excitations from the categorical distribution Pt,c/

∑256
i=1 Pt,i. We

use T = .001, which maximizes the F1 score of the voiced/unvoiced
decision.

4. EVALUATION

We design our evaluation to test two hypotheses: (1) CLPCNet
allows users to perform pitch-shifting and time-stretching of speech
with high accuracy suitable for prosody modification, and (2) the
subjective quality of pitch-shifting and time-stretching with CLPC-
Net meets or exceeds that of TD-PSOLA [1] and WORLD [2],
two competitive DSP-based methods that have not been outper-
formed by existing neural methods. We use the Python psola [24]
and pyworld [25] packages as baseline for TD-PSOLA and
WORLD, respectively. We use CREPE to extract pitch contours
used to control both CLPCNet, TD-PSOLA, and WORLD. We
also compare to the original LPCNet model (using checkpoint
lpcnet20h 384 10 G16 80.h5 in the public LPCNet imple-
mentation [26]). In our objective evaluation, we ablate each of our
three proposed improvements to LPCNet, corresponding to sections
3.1 through 3.3. For all tables, ↑ means higher is better and ↓
means lower is better.

4.1. Data

We use the VCTK dataset [27] for training. We train on 100 speak-
ers, withholding four male and four female speakers for unseen
speaker evaluation. To evaluate on unseen utterances by speakers
seen during training, we set aside four utterances per speaker from
four female and four male speakers in the training data. We use
microphone 2, which contains less distortion and noise. To
test the robustness of CLPCNet to unseen recording conditions, we
perform additional evaluation on the clean partition of the DAPS
dataset [28] as well as the RAVDESS [29] dataset. RAVDESS
contains a significant amount of reverb, which we remove using
HiFi-GAN [30].

We resample all audio to 16 kHz and apply a 5th-order Butter-
worth high-pass filter with a 65 Hz cutoff to remove the 50 Hz hum
in VCTK. This filter is shallow enough for CLPCNet to perform ac-
curate pitch-shifting below the cutoff (e.g., see Figure 1). We apply
a preemphasis filter with a coefficient of .85, followed by a limiter
to prevent clipping [31]. CREPE pitch is extracted from the audio
prior to preemphasis. As in the original LPCNet, YIN pitch is ex-
tracted after preemphasis. We found that peak normalization to 0.8
or 1.0 as well as LUFS normalization [32] all harmed performance,
but without normalization, examples with low peak amplitude have
artifacts in voiced regions. Therefore, we normalize utterances with
a peak amplitude less than 0.2 to have a peak amplitude of 0.4.

4.2. Training

We train CLPCNet for 45 million steps with a batch size of 64. The
number of steps was selected to maximize the F1 score of voiced
frame classification. Each item in the batch contains a random slice
of 15 frames of BFCCs and pitch features and the corresponding
2400 excitation, prediction, and sample features. We use the AMS-
Grad [33] optimizer with a learning rate of 10−3 and weight decay

of 5×10−5 to minimize the cross entropy loss between the predicted
and ground truth excitations. We omit sparsifying the GRU weights,
which does not harm quality when the dataset is sufficiently large.

4.3. Objective evaluation

We report objective metrics to measure the ability of CLPCNet to
perform constant- and variable-ratio pitch-shifting. We omit objec-
tive evaluation of time-stretching, as the generated audio is precisely
sample-aligned by construction. Both LPCNet and CLPCNet take
as input a pitch contour (see Section 2.1). To measure pitch accu-
racy, we replace the input pitch with a target pitch and compare the
pitch of the synthesized audio to the target pitch. We report three
objective pitch metrics: (1) RMS, the root-mean-square of the pitch
error in cents within frames where both the target and synthesized
speech are classified as voiced, (2) F1, the F1 score of the binary
voiced/unvoiced decision, and (3) GPE, the gross pitch error, de-
fined as the fraction of voiced pitch values with pitch error greater
than k cents. We use k = 50. For constant-ratio pitch-shifting, we
evaluate these metrics using ratios of .71, 1 (unmodified), and 1.41.

We perform objective evaluation of variable-ratio pitch-shifting
on RAVDESS. RAVDESS contains an English speech dataset with
24 speakers saying two sentences with many different, expressive
prosodies. We select pairs of utterances where the same speaker
says the same sentence with different pitch and phoneme durations.
We use pitch-shifting and time-stretching to make one utterance in a
pair have the pitch and phoneme durations of the other. We use the
pitch of the target utterance as ground truth for evaluation. We create
5 pairs each from 20 speakers, for a total of 199 pairs (one speaker
only produced 4 pairs) from 277 unique utterances. Given the mul-
timodality of English prosody, this is a suitable prosody transfer
task, producing pitch-shifting ratios between .4 and 2.5 and time-
stretching ratios between .25 and 4.

We perform objective evaluation of constant-ratio pitch-shifting
on VCTK, DAPS, and RAVDESS. For VCTK, we use four utter-
ances from eight seen speakers and four utterances from eight un-
seen speakers. For DAPS, we use ten utterances from ten speakers.
For RAVDESS, we use 100 utterances randomly selected among the
277 used for variable-ratio evaluation.

We perform three ablations to evaluate our methods proposed
in sections 3.1-3.3. For section 3.1, we use the YIN pitch and non-
uniform bin spacing of the original LPCNet. We set all pitch values
less than 63 Hz to 63 Hz, as this representation cannot represent fre-
quencies below this point. We use YIN to evaluate the pitch accuracy
of this ablation. To ablate 3.2, we remove our proposed resampling
augmentation. For section 3.3, we remove the distribution threshold
(i.e., we set T = 0) to demonstrate the importance of this parameter.

4.4. Subjective evaluation

We report the results of subjective experiments designed to evaluate
the ability of CLPCNet to perform both constant- and variable-ratio
pitch-shifting and time-stretching. All experiments are mean opinion
score (MOS) tests conducted on Amazon Mechanical Turk with a
scale from 1 (worst) to 5 (best). For all experiments, we test the
audio quality using five conditions: (1) the original audio, (2) TD-
PSOLA, (3), WORLD, (4) LPCNet, and (5) CLPCNet. We perform
variable-ratio evaluation on the RAVDESS dataset and constant-ratio
evaluation on DAPS, using the same examples as in our objective
evaluation. We evaluate pitch-shifting at constant ratios of .67, .80,
1, 1.25, and 1.5. We evaluate time-stretching at constant ratios of
.50, .71, 1, 1.41, and 2.



Fig. 2. Subjective mean opinion scores (MOS) for (left) constant-ratio time-stretching, (center) constant-ratio pitch-shifting, and (right)
variable-ratio pitch-shifting and time-stretching. Asterisks indicate statistically significant winners of two-sided t-tests with p = 0.05.

Method Rate F1↑ RMS↓ GPE↓
0.71 .995 28.9 .029

TD-PSOLA 1.00 .999 8.4 .000
1.41 .996 19.8 .026
0.71 .935 16.1 .017

WORLD 1.00 .935 19.2 .027
1.41 .935 16.2 .016
0.71 .779 434.0 .290

LPCNet 1.00 .791 79.5 .101
1.41 .786 163.0 .239
0.71 .942 66.4 .228

CLPCNet 1.00 .945 21.6 .040
1.41 .941 119.0 .304
0.71 .914 250.0 .389

- pitch (3.1) 1.00 .923 75.3 .140
1.41 .920 221.0 .341
0.71 .931 209.0 .332

- augmentation (3.2) 1.00 .938 25.0 .049
1.41 .933 177.0 .356
0.71 .596 44.9 .114

- sampling (3.3) 1.00 .596 17.1 .028
1.41 .594 84.1 .152

Table 1. Objective evaluation of pitch-shifting with baselines and
three ablations on DAPS for three constant ratios.

5. RESULTS

In our objective evaluation, we find that CLPCNet significantly im-
proves the F1 and RMS of pitch-shifting (see Tables 1 and 3) com-
pared to the original LPCNet. The pitch-shifting accuracy is less
than TD-PSOLA or WORLD. However, prior studies have shown
that humans do not register variations in pitch less than 150 cents
as a distinct prosody [34], making CLPCNet suitable for prosody
editing. Our ablations highlight crucial design decisions for high-
quality pitch-shifting, but do not completely explain the performance
gap between CLPCNet and LPCNet. The remaining gap is due to
increasing the amount of training data, removing the original data
augmentation, and removing the sparsity constraint on the GRU.

While more direct comparison is needed, our F1 on clean speech
data substantially outperforms those reported by previous state-of-
the-art neural methods such as PS-WaveNet [4], QP-PWG [6], and
uSFGAN [7], and our RMS compares favorably or better. Note that
a higher F1 score makes having a low RMS more difficult, as
more voiced frames are being evaluated (e.g., compare CLPCNet
with and without the sampling ablation in Table 1).

Dataset Rate F1↑ RMS↓ GPE↓
0.71 .931 49.5 .133

VCTK (seen) 1.00 .931 20.0 .035
1.41 .925 81.1 .185
0.71 .924 47.0 .117

VCTK (unseen) 1.00 .925 17.6 .024
1.41 .922 85.7 .160
0.71 .943 58.2 .128

RAVDESS 1.00 .945 17.6 .029
1.41 .942 104.0 .199

Table 2. Objective evaluation of constant-ratio pitch-shifting with
CLPCNet on VCTK and RAVDESS for three constant ratios.

Method F1↑ RMS↓ GPE↓
TD-PSOLA .901 14.2 .015
WORLD .893 14.0 .016
LPCNet .748 99.3 .104
CLPCNet .883 58.3 .149

Table 3. Objective evaluation of variable-ratio pitch-shifting on the
RAVDESS dataset.

We analyze the results of our subjective evaluation (Figure 2)
using two-sided t-tests with a p-value of 0.05. We find that CLPC-
Net outperforms LPCNet on all conditions. CLPCNet outperforms
WORLD on constant-ratio time-stretching for ratios less than one,
as well as for constant-ratio pitch-shifting for ratios less than 1.5.
WORLD outperforms CLPCNet only for pitch-shifting with a ratio
of 1.5. TD-PSOLA outperforms CLPCNet for time-stretching with
a ratio of 0.71 and pitch-shifting with a ratio of 1.5. However, TD-
PSOLA is non-parametric, and cannot be used for, e.g., speech cod-
ing or vocoding. CLPCNet outperforms all conditions on variable-
ratio pitch-shifting and time-stretching (e.g., prosody editing), but
does not match the quality of the original recording.

6. CONCLUSION

Modern speech editing software necessitates high-quality, natural-
sounding speech manipulation. In this paper, we introduce CLPC-
Net, an improved LPCNet vocoder that makes significant progress
towards this goal. In objective evaluation, we show that CLPCNet
exhibits pitch-shifting accuracy suitable for speech prosody edit-
ing. In subjective evaluation, we show that the quality of pitch-
shifting and time-stretching with CLPCNet is comparable or better
than LPCNet, TD-PSOLA, and WORLD.
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