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ABSTRACT

Conditional waveform synthesis models learn a distribution of audio waveforms
given conditioning such as text, mel-spectrograms, or MIDI. These systems em-
ploy deep generative models that model the waveform via either sequential (au-
toregressive) or parallel (non-autoregressive) sampling. Generative adversarial
networks (GANs) have become a common choice for non-autoregressive wave-
form synthesis. However, state-of-the-art GAN-based models produce artifacts
when performing mel-spectrogram inversion. In this paper, we demonstrate that
these artifacts correspond with an inability for the generator to learn accurate pitch
and periodicity. We show that simple pitch and periodicity conditioning is insuf-
ficient for reducing this error relative to using autoregression. We discuss the
inductive bias that autoregression provides for learning the relationship between
instantaneous frequency and phase, and show that this inductive bias holds even
when autoregressively sampling large chunks of the waveform during each for-
ward pass. Relative to prior state-of-the-art GAN-based models, our proposed
model, Chunked Autoregressive GAN (CARGAN) reduces pitch error by 40-60%,
reduces training time by 58%, maintains a fast generation speed suitable for real-
time or interactive applications, and maintains or improves subjective quality.

1 INTRODUCTION

Conditional audio waveform generation has seen remarkable improvements in fidelity and com-
putational cost in recent years, benefiting applications such as text-to-speech (Kim et al., 2021),
voice editing (Qian et al., 2020; Morrison et al., 2020), and controllable music generation (Dhari-
wal et al., 2020). These advancements are driven by concurrent improvements in deep generative
models (Bond-Taylor et al., 2021), which model the distribution of training data with or without aux-
iliary conditioning information. Conditional audio generation models distributions of audio wave-
forms with conditioning such as text (Kim et al., 2021), mel-spectrograms (Kong et al., 2020), or
MIDI (Hawthorne et al., 2018). In this paper, we focus on tasks such as spectrogram-to-waveform
inversion, where the temporal alignment between the conditioning and the waveform is known and
the alignment does not have to be learned by the model (Donahue et al., 2020; Kim et al., 2021).

Generative neural networks are the dominant method for audio generation tasks, strongly outper-
forming comparable methods that use only digital signal processing (DSP) techniques (Griffin &
Lim, 1984; Morise et al., 2016). Neural methods learn the waveform distribution directly from
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data. Let x = {x1, . . . , xT } be an audio waveform and c = {c1, . . . , cU} be an aligned—but not
necessarily same length—conditioning signal (e.g., a mel-spectrogram). Conditional neural audio
generation aims to learn the conditional distribution p(x|c). Such models are commonly classified
as either generating samples sequentially (autoregressive) or in parallel (non-autoregressive). We
next describe autoregressive and non-autoregressive methods for audio generation, as well as hybrid
methods that aim to combine the benefits of both methods.

Autoregressive methods Autoregressive models parameterize p(x|c) via the following factoriza-
tion.

p(x|c) =
T∏

t=0

p(xt|x1, . . . , xt−1, c) (1)

These models produce subjectively high-quality audio. However, autoregressive generation involves
sequentially sampling each audio sample, where each sample requires a forward pass through a
neural network. Thus, one major disadvantage of autoregressive models is that generation is slow.

Examples of autoregressive models include WaveNet (Oord et al., 2016), SampleRNN (Mehri et al.,
2016), WaveRNN (Kalchbrenner et al., 2018), and Jukebox (Dhariwal et al., 2020). WaveNet in-
troduced the idea of autoregressive waveform generation, demonstrating high-quality generation of
speech from aligned linguistic features (e.g., pitch and phonemes) as well as unconditioned genera-
tion of speech and music. SampleRNN uses a hierarchy of gated recurrent units (Cho et al., 2014)
that operate at increasing temporal resolution to reduce the computation needed to generate each
sample. WaveRNN uses a smaller architecture and methods such as weight sparsification (Narang
et al., 2017; Zhu & Gupta, 2017) to improve generation speed without sacrificing quality. The re-
sulting model can perform real-time generation, but requires a complex engineering pipeline that
includes sparse matrix operations and custom GPU kernels. Jukebox uses a sparse autoregressive
transformer (Child et al., 2019) to generate discrete codes of a hierarchical VQVAE (Razavi et al.,
2019). Jukebox can generate coherent musical excerpts from a variety of genres with rich condition-
ing, but requires over eight hours on a V100 GPU to produce one minute of audio.

Non-autoregressive methods Non-autoregressive models parameterize p(x|c) directly, using meth-
ods such as normalizing flows (Dinh et al., 2014), denoising diffusion probabilistic models
(DDPMs) (Ho et al., 2020), source-filter models (Fant, 1970), and generative adversarial networks
(GANs) (Goodfellow et al., 2014). Exemplar models for conditional audio generation include the
flow-based WaveGlow (Prenger et al., 2019), the DDPM-based WaveGrad (Chen et al., 2020), the
Neural Source-Filter (NSF) model (Wang et al., 2019), and the GAN-based HiFi-GAN (Kong et al.,
2020). WaveGlow is composed of invertible operations with simple Jacobians such as 1x1 convo-
lutions and affine transformations (Kingma & Dhariwal, 2018) to model a sequence of functions of
random variables drawn from increasingly complex distributions. While generation with WaveGlow
is fast, it requires substantial training resources (e.g., a week of training on 8 V100s) as well as mem-
ory resources due to the high parameter count. WaveGrad models the gradient of the log probability
density (i.e., the score function) via score matching (Hyvärinen & Dayan, 2005) and draws samples
from the score-based model using Langevin dynamics (Song & Ermon, 2019). Samples provided
by the authors of WaveGrad indicate that the model does not accurately reproduce high-frequency
content. NSF creates a deterministic waveform with the correct frequency and uses a neural network
to transform this waveform into speech. Source-filter models require accurate pitch estimation and
are restricted to monophonic speech signals. HiFi-GAN uses a convolutional generator to generate
audio and multiple discriminators that evaluate the generated waveform at various resolutions and
strides. HiFi-GAN permits fast generation on CPU and GPU, but requires two weeks of training on
two V100 GPUs and regularly produces artifacts, which we discuss in Section 2.

Hybrid methods Hybrid methods combine the strengths of both autoregressive and non-
autoregressive models by generating more than one sample on each forward pass. Existing hybrid
methods for waveform synthesis parameterize p(x|c) by factoring into chunks of adjacent audio
samples that are autoregressively generated.

p(x|c) =
T∏

t={k,2k,...,T}

p(xt−k, . . . , xt|x1, . . . , xt−k−1, c) (2)

Subscale WaveRNN (Kalchbrenner et al., 2018) is one such model, generating 16 samples at a
time. WaveFlow (Ping et al., 2020) and Wave-Tacotron (Weiss et al., 2021) are both flow-based

2



Published as a conference paper at ICLR 2022

hybrid models. WaveFlow uses autoregression to handle short-range dependencies and a non-
autoregressive architecture to model long-range correlations, while Wave-Tacotron uses autoregres-
sion for long-range dependencies and a non-autoregressive model for short-range dependencies.
These hybrid models demonstrate a tradeoff between the high model capacity of autoregressive
models and the low latency of non-autoregressive models.

In this work, we present Chunked Autoregressive GAN (CARGAN), a hybrid GAN-based model for
conditional waveform synthesis. CARGAN features fast training, reduced pitch error, and equivalent
or improved subjective quality relative to previous GAN-based models. Specifically, we make the
following contributions.

• We show that GAN-based models such as HiFi-GAN do not accurately preserve the pitch
and periodicity of the audio signal, causing audible artifacts in the generated audio that
persist across many recent works.

• We demonstrate a close relationship between pitch, phase, and autoregression, and show
that autoregressive models possess an inductive bias towards learning pitch and phase that
is related to their ability to learn the cumulative sum operator.

• We show that performing autoregression in large chunks allows us to maintain the inductive
bias of autoregression towards modeling pitch and phase while maintaining a fast gener-
ation speed, and that the optimal chunk size is related to the causal receptive field of the
generator.

• We identify and document common artifacts in GAN-based waveform synthesis, providing
examples and offering possible causes. We also make our code available under an open-
source license1

2 PROBLEMS WITH NON-AUTOREGRESSIVE GANS

State-of-the-art GAN-based waveform synthesis models, such as HiFi-GAN (Kong et al., 2020),
demonstrate impressive subjective quality and generation speed, but exhibit pitch inaccuracy, audible
artifacts caused by periodicity inaccuracy, and limitations induced by the objective function.

Figure 1: Left An example of pitch inaccuracy where HiFi-GAN has an average error of 65.8 cents
and CARGAN obtains an error of 15.1 cents. Right An example of periodicity inaccuracy where
HiFi-GAN has an RMSE of 0.19 and CARGAN obtains an RMSE of 0.04.

Pitch error artifacts We trained HiFi-GAN (V1) on the VCTK dataset (Yamagishi et al., 2019) and
evaluated the pitch accuracy on 256 randomly selected sentences from a validation set containing
speakers seen during training. We use the pitch representation described in Appendix A to extract
pitch as well as a binary voiced/unvoiced classification for each frame, which indicates whether the
frame exhibits the periodic structure of a pitched sound. We measure the pitch error in regions where
both the original and generated speech are voiced. We measure the root-mean-square of the pitch
error in cents, defined as 1200 log2(y/ŷ) for pitch values y, ŷ in Hz. We find an average error of
51.2 cents—more than half a semi-tone. A side-by-side listening comparison of examples with high
pitch error and the ground truth audio confirms that current GAN models make audible intonation
errors (see Figure 1). Listening examples available on the companion website2.

1Code is available at https://github.com/descriptinc/cargan.
2Audio examples are available at https://maxrmorrison.com/sites/cargan.
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Periodicity artifacts High pitch error indicates inaccurate reconstruction, but is often not percepti-
ble in isolation as speech with slightly different pitch may still sound natural. We manually collect
examples from HiFi-GAN that contain audible artifacts. Using our periodicity representation de-
scribed in Appendix A, which uses the confidence of a pretrained neural pitch estimator to measure
whether a frame of audio exhibits periodic structure between zero (completely aperiodic) and one
(completely periodic), we find that these artifacts are commonly regions of high periodicity error
(see Figure 1). This indicates that existing GAN-based models make audible voiced/unvoiced er-
rors that perceptually degrade the audio. On the companion website, we provide listening examples
as well as examples of this artifact from multiple recent works to demonstrate its prevalence. We
strongly encourage readers to listen to these examples, as addressing this artifact is central to
our work.

Inherent limitations Current GAN-based models for waveform synthesis depend on a feature
matching loss (Larsen et al., 2016; Kumar et al., 2019). This loss is computed by passing the gener-
ated and corresponding real audio through the discriminators, and taking the L1 distances between
all activations. Penalizing the L1 distance between activations of early layers requires the generator
to produce a waveform that is close to ground truth after only one convolution and non-linearity.
This requires the generator to know the initial phase. Otherwise, the generator can incur a large
loss due to phase rotation. As we will discuss in Section 3, the initial phase is not known in the
non-autoregressive setting.

3 RELATING AUTOREGRESSION, PITCH, AND PHASE

Our work uses autoregression to address the issues presented in Section 2. We use autoregression
to improve the pitch accuracy of HiFi-GAN after many less successful experiments using more
intuitive methods such as conditioning the generator on pitch, conditioning the discriminator on
pitch, and more, as described in Appendix B.

Autoregression is a sensible choice for addressing the issues presented in Section 2 because of
the relationship between pitch and phase in a deterministic, periodic signal. Consider a perfectly
periodic signal with instantaneous frequency f = {f1, . . . , fT } in Hz and sampling rate r. The
unwrapped instantaneous phase φ = {φ0, φ1, . . . φT } can be autoregressively computed as follows.

φt = φt−1 +
2π

r
ft (3)

The relationship between f and φ is therefore a cumulative sum operation. Autoregression provides
an inductive bias for learning an arbitrary-length cumulative sum operation, which relates the in-
stantaneous frequency and instantaneous phase in deterministic signals. Specifically, incorporating
autoregression allows the network to learn φt−1 and ft from previous waveform samples, which
informs the generator of the ground truth phase during training. Prior autoregressive vocoders have
shown that the entropy of the distribution over audio samples learned by the model within voiced
regions is low—especially relative to unvoiced regions (Jin et al., 2018). Thus, our assumption of a
deterministic, periodic signal is a reasonable approximation in voiced regions.

Equation 3 assumes that a single sample is generated during each forward pass. However, if the
generator G is capable of learning a fixed-length cumulative sum of length k, we can reduce the
number of forward passes by a factor of k. As well, the instantaneous frequency can be estimated
from the last n samples as long as n is sufficiently large to represent one period of the frequency.
This allows us to replace explicit pitch conditioning with conditioning on n previous samples.

φt, . . . , φt+k = G(φt−n−1, . . . , φt−1) (4)

Given a generator G, how can we determine the maximum length of a cumulative sum that the gen-
erator can learn? First, consider a fully-connected layer with ` input and output channels. This fully-
connected layer can learn a cumulative sum of length ` when the weights form a upper-triangular
matrix of all ones. Next, consider a non-causal convolutional layer with kernel sizem. Equation 4 is
strictly causal, so we use only the causal receptive field of the convolutional layer. This indicates that
the maximum length of a learnable cumulative sum is b(m+ 1)/2c. By induction, a convolutional
generator G is capable of learning a cumulative sum with length equal to its causal receptive field.
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Figure 2: Overview of our proposed Chunked Autoregressive GAN (CARGAN). Blue trapezoids
are the learned encoder (E), generator (G), and discriminators (D). Dashed lines represent operations
only performed during training. The red line and red highlighted region are the autoregressive loop,
where previously generated samples are passed as autoregressive conditioning when generating the
next chunk. The previous samples are always prepended when performing concatenation along the
time axis.

4 CHUNKED AUTOREGRESSIVE GAN

We describe Chunked Autoregressive GAN (CARGAN), our proposed model for conditional wave-
form synthesis that uses autoregression to address the issues presented in Section 2. CARGAN
(Figure 2) consists of three components: (1) an autoregressive conditioning stack, which summa-
rizes the previous k samples into a fixed-length vector, (2) a generator network that converts input
conditioning (e.g., a mel-spectrogram) and autoregressive conditioning into a waveform, and (3) a
series of discriminators that provide adversarial feedback. The generator and autoregressive con-
ditioning stack are jointly trained to minimize a weighted sum of a differentiable mel-spectrogram
loss, the discriminator losses, and the feature matching loss described in Section 2. The discrimina-
tors are trained to discern between real and generated audio in a binary classification task.

The previous k samples used for autoregressive conditioning are prepended to the real and gener-
ated audio evaluated by the discriminators. This allows the discriminators to evaluate the boundary
between the autoregressive and generated audio. Without this step, the generator produces boundary
artifacts that sound like periodic clicks. Listening examples available on companion website.

For our generator and discriminator architectures, we use the discriminators from HiFi-GAN (Kong
et al., 2020) as well as a modified version of the generator from GAN-TTS (Bińkowski et al., 2019),
both of which are described in Appendix C. We find that this modified GAN-TTS generator provides
superior performance over the generator of HiFi-GAN regardless of whether autoregression is used.

4.1 AUTOREGRESSIVE CONDITIONING STACK

The autoregressive conditioning stack converts the previous k samples of the waveform into a fixed-
length embedding. We use a simple architecture, consisting of five linear layers. We use leaky ReLU
with a slope of −0.1 between layers. The hidden size of all layers is 256 and the output size is 128.
The output embedding is concatenated to each frame of the spectrogram that is passed as input to
the generator (i.e., the embedding is repeated over the time dimension).

We also experimented with multiple fully convolutional architectures, including convolutional ar-
chitectures with more layers, a larger capacity, and residual connections (He et al., 2016). We
found that the simple fully-connected model outperforms convolutional models. We hypothesize
that fully-connected layers are advantageous because they provide an inductive bias towards learn-
ing the autocorrelation function, which is a common operation used in DSP-based pitch estima-
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tion (De Cheveigné & Kawahara, 2002; Rabiner & Schafer, 1978). While a stack of convolutional
layers can learn an autocorrelation, the autocorrelation function cannot be modeled by a single con-
volution with kernel size smaller than the signal length. However, autocorrelation can be learned
with a single fully-connected layer with equal-sized input and output.

4.2 LOSS COMPENSATION

The generator is trained using both feature matching and mel-spectrogram losses. It is important
that the ratio of these loss terms remains balanced. Otherwise, artifacts occur. When training with
autoregressive conditioning, the feature matching loss decreases significantly relative to the non-
autoregressive setting. We find that autoregression also improves other phase-dependent metrics not
used as training losses, such as the L2 loss between the generated and ground-truth waveform and the
squared error between the phase components of the signal, where each bin of the phase spectrum is
weighted by the corresponding magnitude. This indicates that the autoregressive conditioning stack
is successfully providing phase information to the generator. However, with the feature matching
loss reduced, the mel-spectrogram error dominates the training criteria. This produces a metallic
sound in the audio, especially during breath sounds and unvoiced fricatives of speech data. For
example, /S / (e.g., “she”) ends up sounding closer to the corresponding voiced fricative /Z/ (e.g.,
“Asia”). Listening examples available on the companion website. We fix these metallic artifacts by
rebalancing the losses: while HiFi-GAN originally uses weights of 2 and 45 for the feature matching
and mel-spectrogram losses, respectively, we use 7 and 15.

5 EXPERIMENTS

The following sections describe experiments that evaluate our proposed claims. First, we will show
that autoregressive models are more capable than non-autoregressive models at learning an arbitrary
length cumulative sum (Section 5.1). Next, we perform spectrogram-to-waveform inversion on
speech (Section 5.2), and show that CARGAN produces better pitch accuracy, better subjective
quality, faster training time, and reduced memory consumption during training. In Appendix J, we
also perform spectrogram-to-waveform inversion on music data. We show that CARGAN is capable
of modeling reverberant signals, exhibits greater pitch accuracy on musical data, and is more capable
of modeling accurate low-frequency information relative to HiFi-GAN.

All models are trained with a batch size of 64. We use the AdamW optimizer (Loshchilov & Hutter,
2017) with a learning rate of 2 × 10−4 and β = (.8, .99). We use an exponential learning rate
schedule that multiplies the learning rate by .999 after each epoch. For all tables, ↑ means higher
is better and ↓ means lower is better.

5.1 SYNTHETIC CUMULATIVE SUM EXPERIMENT

Here we show that CARGAN is more capable of modeling an arbitrary-length cumulative sum
than HiFi-GAN. We generate a synthetic dataset by replacing each audio sample in the VCTK
dataset (Yamagishi et al., 2019) with a random sample taken from a uniform distribution between
zero and one. We take the cumulative sums of these random vectors, and normalize both the random
vector and cumulative sum by the sum of the random vector. The random vectors are the inputs to
the model, and their cumulative sums are the ground truth training targets.

To train on this synthetic dataset, we must modify the generator architecture and training criteria.
Given that the input and target sequences have the same sampling rate, we remove all upsampling
operations from the generator. We reduce the number of channels in each layer by a factor of four
to reduce training time. The target sequences share a deterministic relationship with the input. As
such, we replace the mel error, adversarial, and feature matching losses with a simple L1 loss.

The autoregressive conditioning of CARGAN informs the model of the current total of the cumu-
lative sum. Because HiFi-GAN does not have access to this information, we train HiFi-GAN using
only training data where the current total is zero. This can be viewed as subtracting the current total
from the training target prior to non-autoregressive training.

We train each model for 100,000 steps and evaluate the L1 distance on 256 held-out examples.
We train CARGAN with a chunk size of 2048 and use 512 previous samples for autoregressive
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conditioning. We perform evaluation for signal lengths of 1024, 2048, 4096, 8192, and “Full”, where
“Full” indicates that the entire available signal length is used. We include two additional conditions.
The first is HiFi-GAN with our modified GAN-TTS generator (+ GAN-TTS) to demonstrate that
our improvements on this synthetic task are primarily due to autoregression, and not the larger
causal receptive field of the generator. The second is CARGAN with a larger kernel size of 15 in
all convolution layers (+ Large kernel) to show the impact of a larger causal receptive field in the
autoregressive case.

Results are presented in Table 1. We find that CARGAN provides substantial improvement in the
L1 error for all lengths relative to HiFi-GAN. The non-autoregressive models were trained with a
sequence length of 8192 and overfit to that sequence length, leading to reduced accuracy even for
small sequence lengths. Specifically, Figure 3 shows that the non-autoregressive model converges
to the mean of the training data, whereas the CARGAN converges to the piece-wise mean for each
chunk. When a larger kernel is used, CARGAN has a causal receptive field greater than the chunk
size. This allows CARGAN to learn a smooth interpolation of each chunk and model very long
cumulative sums—consistent with our analysis in Section 3. Note that this analysis does not include
upsampling operations in the generator, which also impacts the size of the causal receptive field in
tasks such as spectrogram inversion.

Method Causal Receptive Field 1024 2048 4096 8192 Full
HiFi-GAN 245 .050 .042 .028 .031 .447

+ GAN-TTS 402 .052 .042 .028 .029 .447
CARGAN 402 .009 .015 .021 .025 .359

+ Large kernel 2802 .009 .013 .019 .024 .132

Table 1: Results of our synthetic cumulative sum experiment. All values are L1 distances between
the predicted and ground truth cumulative sums.

Figure 3: Example output of our synthetic cumulative sum experiment at various lengths.
CARGAN-LK is our proposed model with a larger kernel size.

5.2 SPECTROGRAM-TO-WAVEFORM

We perform spectrogram-to-waveform inversion on speech. We compute the mel-spectrogram from
the ground truth audio, and train models to recover the audio waveform. The exact steps for comput-
ing our mel-spectrogram representation are detailed in Appendix D. All audio is sampled at a sam-
pling rate of 22050 Hz. Audio with a maximum absolute value of less than .35 is peak-normalized
to .35. All models are trained for 500,000 steps. HiFi-GAN was originally trained for 2.5 million
steps. However, this takes about one month on one RTX A6000, prohibiting fast experimentation.
In Appendix E we justify using 500,000 steps by training CARGAN and HiFi-GAN to 2.5 million
steps and showing a comparable gap in pitch and periodicity errors.

We train on the VCTK dataset (Yamagishi et al., 2019) and evaluate on both VCTK and
DAPS (Mysore, 2014). For training on VCTK, we randomly select 100 speakers. We train on a
random 95% of the data from these 100 speakers, using data from both microphones. For evalu-
ation on DAPS, we use the segmented dataset of the first script of the clean partition available on
Zenodo (Morrison et al., 2021).

We use a chunk size of 2048 samples and an autoregressive conditioning input size of 512 samples in
our proposed CARGAN model. In other words, the model generates 2048 samples on each forward
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VCTK DAPS
Method Pitch↓ Periodicity↓ F1↑ Pitch↓ Periodicity↓ F1↑
HiFi-GAN 51.2 .113 .941 54.7 .142 .942
CARGAN 29.4 .086 .956 21.6 .107 .959
- GAN-TTS 37.9 .099 .949 27.0 .117 .953
- Loss balance 33.7 .104 .943 34.1 .119 .952
- Prepend 24.6 .088 .955 24.4 .108 .958

Table 2: Objective evaluation results for spectrogram-to-waveform inversion on VCTK and DAPS.

Figure 4: Subjective pairwise test results for audio quality and naturalness on VCTK and DAPS.
Each row contains the percent preference between two methods (including ties) as well as Bernoulli
confidence intervals (CIs) for the probability of our method being better, equal to, or worse than
the competing method at a p-value of 0.05. Bolded CIs indicate a statistically significant winning
method. Ablations are defined in Section 5.2.

pass, and passes the last 512 generated samples as autoregressive conditioning for the next forward
pass. In contrast, HiFi-GAN produces 8192 samples on each forward pass during training, but many
more samples during generation. The optimal chunk size is selected based on the hyperparame-
ter search described in Appendix F. As the number of previous samples passed as autoregressive
conditioning increases, we notice two behaviors: (1) it lowers the minimal representable frequency
that can be modeled and (2) it significantly increases training time, as the discriminators—which
dominate training time—must also process the full autoregressive conditioning. We approximate
the minimum pitch of typical human speech as 50 Hz, which corresponds to a wavelength of 441
samples given a sampling rate of 22,050 Hz. Thus, 512 is the smallest power of two capable of
representing at least one cycle of a 50 Hz waveform.

We perform both objective and subjective evaluation. For the objective evaluation, we measure
pitch error (in cents), periodicity RMSE, and voiced/unvoiced classification F1 score. We use the
pitch and periodicity representations described in Appendix A. Objective evaluation is performed on
256 randomly selected held-out examples from VCTK and DAPS. For VCTK, we select examples
from seen speakers not used during training. For subjective evaluation, we use Amazon Mechanical
Turk to perform pairwise tests between our proposed CARGAN and the baseline HiFi-GAN on
both VCTK and DAPS. In each pairwise test, 15 participants listen to 20 randomly selected pairs
and select which example sounds best based on speech naturalness and audio quality. Participants
are also given the option of indicating that both examples exhibit equal quality and naturalness. We
construct pairs from 100 randomly selected examples from each dataset. For VCTK, we additionally
perform three pairwise ablation tests to measure the importance of our proposed methods: (1) -
GAN-TTS we use the generator from HiFi-GAN instead of GAN-TTS, (2) - Loss balance we omit
the loss compensation of Section 4.2, using the original weights of 2 and 45 for the mel-spectrogram
and feature matching losses, respectively, and (3) - Prepend we omit prepending the autoregressive
conditioning to the signals passed into the discriminator, so that the discriminator is unable to see
the boundary between the autoregressive conditioning and the generated or real continuation.

Results for objective evaluation of our spectrogram-to-waveform experiments on VCTK and DAPS
data are presented in Table 2. Figure 4 shows the results of the subjective listening tests on both
datasets. For the objective evaluation, we find that CARGAN substantially reduces the pitch and
periodicity error and increases the F1 score of voiced/unvoiced classification. This corroborates our

8



Published as a conference paper at ICLR 2022

hypothesis presented in Section 3 that autoregression provides an inductive bias for learning accurate
pitch and phase information. While our - Prepend ablation exhibits slightly better pitch accuracy
on VCTK, subjective evaluation demonstrates that the boundary artifacts overwhelmingly degrade
the audio signal. For subjective evaluation, we find that CARGAN exhibits equal quality to HiFi-
GAN on VCTK, and superior quality on DAPS. CARGAN also ties with our - GAN-TTS ablation;
however, the objective evaluation indicates that CARGAN exhibits superior pitch and periodicity
error, as well as F1, relative to this ablation. We also explored increasing the causal receptive field
of the generator by increasing the kernel size of all convolutional layers to 15, as in Section 5.1. We
obtain a small improvement in pitch error (24.3 and 20.3 cents on VCTK and DAPS, respectively),
but no improvement in periodicity error or F1 and a significant reduction in generation speed.

In Appendix G we report the DeepSpeech distances proposed in Bińkowski et al. (2019). We do
not find that these experimental metrics correlate well with our objective or subjective metrics. In
Appendix H, we show that there is a weak correlation between subjective preference and periodicity
RMSE, and a smaller correlation between subjective preference and pitch RMSE. This corroborates
our hypothesis in Section 2 that intonation errors are not as perceptible as periodicity errors.

5.3 TRAINING AND GENERATION SPEED

Training Generation
Method Speed (ms/step)↓ Memory use (GB)↓ GPU (RTF)↑ CPU (RTF)↑
HiFi-GAN 1186 40.5 180.8 1.21
CARGAN 502 12.4 10.7 0.45

Table 3: Results for time and memory benchmarking of HiFi-GAN and CARGAN. Real-time factor
(RTF) is the number of seconds of audio that can be generated per second.

We benchmark HiFi-GAN and CARGAN to determine the relative speed and memory consumption
when performing spectrogram-to-waveform inversion on speech data (Section 5.2). We use a single
RTX A6000 for training and generation on a GPU, and two cores of an AMD EPYC 7742 with one
thread per core and a 2.25 GHz maximum clock speed for CPU benchmarking.

Results of our benchmarking are presented in Table 3. We find that CARGAN reduces training time
by 58% and reduces memory consumption during training by 69%. These improvements are due
to the large reduction in training sequence length from 8192 in HiFi-GAN to 2048 in CARGAN.
While generation is slower with CARGAN, we can easily improve generation speed at the cost of
reduced training speed, increased memory usage, and slightly increased pitch error by changing the
chunk size (see Appendix F). As well, the autoregressive nature of CARGAN makes it suitable for
streaming-based applications running over a low-bandwidth network, as not all features have to be
available to begin generation (i.e., the conditioning in Equation 2 is also factorized to be causal).

6 CONCLUSION

In this paper, we proposed Chunked Autoregressive GAN (CARGAN), a GAN-based model for
conditional waveform synthesis. Relative to existing methods, CARGAN demonstrates improved
subjective quality and pitch accuracy, while significantly reducing training time and memory con-
sumption. We show that autoregressive models permit learning an arbitrary length cumulative sum
operation, which relates the instantaneous frequency and phase of a periodic waveform. We demon-
strate that the benefits of autoregressive modeling can be realized while maintaining a fast generation
speed by generating large chunks of audio during each forward pass, where the optimal chunk size
is related to the causal receptive field of the generator architecture.

Our work reveals multiple directions for future improvement. The generation speed of CARGAN
is largely determined by the chunk size. Designing generators with a large causal receptive field
may further improve generation speed by permitting generation in larger chunks. As well, while
CARGAN addresses artifacts caused by pitch and periodicity errors, it induces occasional bound-
ary artifacts in the signal—even when the discriminator is able to evaluate the boundary between
autoregressive conditioning and the generated or real continuation. Future work that addresses this
artifact will further improve subjective quality.
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A PITCH REPRESENTATION

We use torchcrepe (Morrison, 2020) to extract pitch and periodicity features from an audio
waveform. torchcrepe first predicts a categorical distribution over possible pitch values using
CREPE (Kim et al., 2018), a neural pitch estimator trained on music data. We set the probability of
any pitch values outside the human speaking range (approximately 50-550 Hz) to zero and normalize
the resulting distribution to sum to one. This produces a sequence of categorical distributions over
each frame of audio. We perform Viterbi decoding on this sequence of distributions to determine the
maximum likelihood path. For Viterbi transition probabilities, we use a triangular distribution that
assigns zero probability to pitch jumps greater than one octave between adjacent frames. Each step
along the maximum likelihood path has an index associated with a pitch value as well as a probability
value predicted by the model. We convert the path indices to frequencies in Hz to produce a pitch
contour, and use the sequence of probability values as the periodicity contour. Because CREPE is
invariant to amplitude, low-bit noise during nearly silent regions can induce high periodicity. We
compute the A-weighted loudness (McCurdy, 1936) at each frame of audio, and set the periodicity
to zero in frames where the loudness is less than -60 dB relative to a reference level of 20 dB.

CREPE independently predicts a pitch distribution for 1024 samples of audio at a sampling rate of
16000 Hz. Our audio data is sampled at 22050 kHz, and our mel spectrogram features are com-
puted with a hop size of 256 samples. To align pitch features with the mel spectrogram, we replace
the default padding of CREPE with the same reflection padding used for mel spectrogram com-
putation (Section 5.2) and run CREPE with a hop size of 256 × 16000/22050 = 185.8 samples.
torchcrepe does not currently support a fractional hop size. We instead use a hop size of 185
samples and linearly resample to the target length if needed. Resampling of pitch values is performed
in base-2 log-space.

Given the pitch and periodicity contour of a speech signal, we can extract a binary value for each
frame that indicates whether or not the frame contains a voiced phoneme. Intuitively, when the
entropy of the distribution produced by CREPE is low, the signal is likely to be periodic with a
frequency given by the peak of the distribution (i.e., the periodicity will be high). While one could
perform this voiced/unvoiced classification by simply thresholding the periodicity at a given value,
we find that this induces chatter, which occurs when a signal oscillates above and below a threshold.
We propose to use hysteresis thresholding, which requires the signal to remain above the threshold
for a certain number of frames in order to be considered voiced. This hysteresis thresholding is also
how chatter is reduced in audio compressors (Senior, 2011).

B PITCH CONDITIONING EXPERIMENTS

Our work proposes to use autoregression to improve the pitch and periodicity error of GAN-based
speech synthesis. However, autoregression is not an intuitive solution for improving pitch and pe-
riodicity error compared to, e.g., conditioning on pitch features. During development, we also ex-
plored a number of these more intuitive methods. Here we describe a subset of the experiments we
tried. All experiments are performed using the baseline HiFi-GAN model.

Generator conditioning We condition the generator on the pitch and periodicity features described
in Appendix A. These are concatenated to the input mel-spectrogram features as two additional
channels. Pitch features are converted to base-2 log-space prior to concatenation.
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Discriminator conditioning We condition the discriminator on pitch and periodicity features. We
linearly upsample both the pitch (in base-2 log-space) and periodicity features to the same temporal
resolution as the generated waveform, and concatenate the upsampled pitch and periodicity as two
additional channels. Intuitively, this allows the discriminator to determine if the pitch and periodicity
of the generated speech is consistent with the ground truth pitch and periodicity features.

CREPE perceptual loss We pass the real and generated audio into the CREPE pitch estimator (Kim
et al., 2018) and perform feature matching between all activations, including the unnormalized log-
its. The weights of CREPE are frozen during training. We compute the L1 loss between all activa-
tions and add the result to the generator loss of HiFi-GAN.

Pitch discriminator Inspired by the OASIS model for semantic image segmentation (Schönfeld
et al., 2020), we design a discriminator that jointly performs pitch estimation and real/fake classifi-
cation. We use the architecture of CREPE for the discriminator. Our pitch-estimating discriminator
predicts a 256-dimensional categorical distribution, where the first 255 categories represent evenly
quantized pitch values between 50 and 550 Hz in base-2 log-space, and the final category is used
by the discriminator to indicate that the input audio is fake. The discriminator is trained to catego-
rize all real data as its ground truth pitch and all generated data as fake. The generator is trained
to produce audio that is categorized as the ground truth pitch by the pitch-estimating discriminator.
These generator and discriminator losses are added to the generator and discriminator losses of the
baseline HiFi-GAN.

VCTK DAPS
Method Pitch↓ Periodicity↓ F1↑ Pitch↓ Periodicity↓ F1↑
HiFi-GAN 51.2 .113 .941 54.7 .142 .942
Generator conditioning 39.1 .108 .943 49.7 .135 .945
Discriminator conditioning 33.9 .096 .951 43.0 .121 .952
CREPE perceptual loss 53.6 ,101 .948 54.6 .137 .948
Pitch discriminator 48.9 .109 .943 53.4 .139 .943
CARGAN 29.4 .086 .956 21.6 .107 .959

Table 4: Results for objective evaluation of non-autoregressive pitch conditioning relative to the
baseline HiFi-GAN and our proposed, autoregressive CARGAN.

We provide the pitch and periodicity error for these four experiments, as well as the baseline HiFi-
GAN, on the same 256 examples from the DAPS dataset as used for evaluation in Section 5.2.
Results are presented in Table 4. These results indicate that autoregression plays an important role in
reducing pitch and periodicity error that cannot be fully compensated for by more intuitive methods
in the non-autoregressive case.

C NETWORK ARCHITECTURE

Layer Input channels Output channels Upsampling ratio
1 768 768 1
2 768 768 1
3 768 384 4
4 384 384 4
5 384 384 4
6 384 384 1
7 384 192 2
8 192 192 1
9 192 96 2
10 96 96 1

Table 5: Layer configuration for all GBlocks in our modified GAN-TTS generator.

Our modified GAN-TTS generator consists of a 1x1 convolution followed by a sequence of GBlocks
and an output convolution with tanh activation. All convolutional layers in the generator have a ker-
nel size of three and are padded to maintain the same temporal dimension unless otherwise speci-
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fied. Each GBlock contains two convolutional blocks. The first block consists of a ReLU activation,
optional nearest neighbors upsampling, a convolutional layer, ReLU activation, and a dilated convo-
lutional layer with a dilation rate of three samples. The second block consists of a ReLU activation,
dilated convolution with a dilation rate of nine, a second ReLU, and a second dilated convolution
with a dilation rate of 27. The input to the generator is passed through the first convolutional block as
well as a residual path that consists only of optional upsampling and a 1x1 convolution. The output
of the first block and the residual connection are added and passed through the second convolutional
block. A residual connection adds the input and output of the second convolutional block. Table 5
provides the number of channels and ratio of nearest neighbors upsampling for each GBlock in our
generator.

We use the same discriminators as HiFi-GAN (Kong et al., 2020). HiFi-GAN utilizes eight discrimi-
nators to provide adversarial feedback to the generator. Three of these discriminators are multi-scale
discriminators (MSDs), each of which evaluates waveforms at a different resolution: raw audio,
2x average-pooled audio, and 4x average pooled-audio. Each MSD consists of eight grouped and
strided 1D convolutional layers with Leaky ReLU activations. The MSD that operates on raw audio
uses spectral normalization (Miyato et al., 2018), while the other two use weight normalization (Sali-
mans & Kingma, 2016). The other five discriminators are multi-period discriminators (MPDs), each
of which evaluates the input audio of length T by first reshaping into 2D matrices of dimension
T/p × p for a different prime number p ∈ [2, 3, 5, 7, 11]. Each MPD consists of six strided 2D
convolutions with weight normalization and Leaky ReLU activations.

D MEL-SPECTROGRAM REPRESENTATION

To compute the mel-spectrogram, we first compute the magnitude of the STFT of the waveform. We
map each frame of the magnitude spectrogram onto the mel scale using a triangular filterbank. We
clamp the resulting mel energies to have a minimum of 1× 10−5 and take the base-10 log. We use
1024 frequency channels for the STFT, with a window size of 1024 samples and a hop size of 256
samples. We use 80 frequency channels for our mel spectrogram representation. Prior to computing
the STFT, we pad the audio using reflection padding so that the real and generated waveforms are
equal length when the real audio is divisible by the hop size.

E PITCH AND PERIODICITY ERROR AT 2.5 MILLION STEPS

VCTK DAPS
Method Pitch↓ Periodicity↓ F1↑ Pitch↓ Periodicity↓ F1↑
HiFi-GAN (0.5M) 51.2 .113 .941 54.7 .142 .942
HiFi-GAN (2.5M) 61.2 .094 .950 43.5 .124 .952
CARGAN (0.5M) 29.4 .086 .956 21.6 .107 .959
CARGAN (2.5M) 31.7 .077 .961 22.6 .090 .966

Table 6: Pitch and periodicity error for a varying number of steps

We compute the pitch and periodicity error of HiFi-GAN and CARGAN at 0.5 million and 2.5
million steps. For HiFi-GAN, training to 2.5 million steps takes about one month on an RTX A6000
GPU. We use the same 256 examples from VCTK and DAPS as used for objective evaluation in
Section 5.2. Results are presented in Table 6. We see that CARGAN outperforms HiFi-GAN at
both 0.5 million and 2.5 million steps. Given the shorter training time and proportional pitch and
periodicity errors, we use 0.5 million steps for all other experiments.

F CHUNK SIZE ABLATION

Our proposed autoregressive model, CARGAN, generates 2048 samples during each forward pass.
Here we justify using 2048 samples on each forward pass by comparing the pitch and periodicity
error as well as training and generation speeds at various chunk sizes. We train our best model using
chunk sizes of 512, 1024, 2048, 4096, and 8192 and evaluate using the same 256 samples from
DAPS as used for evaluation in Section 5.2. Results are presented in Table 7. We find that a chunk
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Objective metrics Speed
Chunk size Pitch↓ Periodicity↓ F1↑ Training (ms/step)↓ GPU Generation (RTF)↑
512 22.9 .109 .956 269 2.43
1024 22.1 .112 .955 354 4.77
2048 21.6 .107 .959 502 10.7
4096 24.8 .111 .957 821 20.5
8192 24.1 .108 .959 1411 39.4

Table 7: Results for objective evaluation and benchmarking of CARGAN using various chunk sizes.
Real-time factor (RTF) is the number of seconds of audio that can be generated per second.

size of 2048 is optimal for pitch, periodicity and F1. As the chunk size increases, training speed
decreases and generation speed increases. In informal subjective evaluation, we find that smaller
chunk sizes are more likely to introduce boundary artifacts (see Section 4), while larger chunk sizes
are more likely to introduce periodicity artifacts discussed in Section 2.

G DEEPSPEECH OBJECTIVE METRICS

Method FDSD↓ cFDSD↓ KDSD↓ cKDSD↓
HiFi-GAN 4.03 .520 5× 10−5 −14× 10−5

CARGAN 4.05 .778 7× 10−5 −11× 10−5

- GAN-TTS 4.04 .776 7× 10−5 −11× 10−5

- Loss balance 4.01 .554 4× 10−5 −13× 10−5

- Prepend 4.07 .875 13× 10−5 −6× 10−5

Table 8: DeepSpeech distances on the VCTK dataset

Method FDSD↓ cFDSD↓ KDSD↓ cKDSD↓
HiFi-GAN 3.65 .432 2× 10−5 −10× 10−5

CARGAN 3.69 .644 7× 10−5 −6× 10−5

Table 9: DeepSpeech distances on the DAPS dataset

We report the Fréchet DeepSpeech distance (FDSD), the Kernel DeepSpeech distance (KDSD) and
their conditional variants (cFDSD and cKDSD) (Bińkowski et al., 2019) on HiFi-GAN, CARGAN,
and all ablations described in Section 5.2. These are objective metrics inspired by the Fréchet
Inception Distance (Heusel et al., 2017) and are meant to approximate subjective preference by
comparing distances between embeddings of real and generated audio produced by the DeepSpeech
2 speech recognition system (Amodei et al., 2016). We use the public implementation of these
distances published by the original authors. This implementation requires at least 10,000 samples
per condition. To obtain these samples, we sample 40 random one-second chunks from each of
the 256 examples from the VCTK and DAPS datasets used for objective evaluation. Results on
VCTK are presented in Table 8 and results on DAPS are presented in Table 9. Note that the public
implementation reports a limited precision for KDSD and cKDSD. Comparing these results to our
subjective evaluation in Table 4, we find that the only statistically significant comparison that is also
reflected in the DeepSpeech distances is between CARGAN and the - Prepend ablation. Therefore,
the DeepSpeech distances do not seem to be an adequate indicator of subjective quality when the
conditions are as close in subjective quality and naturalness as the ones considered in this paper.

H CORRELATION BETWEEN SUBJECTIVE PREFERENCE AND PITCH AND
PERIODICITY

We analyze the subjective pairwise results between HiFi-GAN and CARGAN described in Sec-
tion 5.2. We consider a loss (i.e., the participant thinks HiFi-GAN sounds better) to have a value of
0, a tie as 0.5, and a win (i.e., the participant thinks CARGAN sounds better) as 1. We compute a
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score for each example by averaging over all losses, wins, and ties, and compute the Pearson cor-
relation between this score and the RMSE gap between HiFi-GAN and CARGAN. On VCTK, this
provides an insignificant correlation of 0.065 with a two-tailed p-value of 0.531. The correlation is
more pronounced on DAPS, with a value of 0.257 and a p-value of 0.011. The correlations for pitch
RMSE are significantly less (−0.187 with a p-value of 0.068 on VCTK and −0.005 with a p-value
of 0.962 on DAPS), which corroborates our hypothesis in Section 2 that intonation errors are not as
perceptible as periodicity errors. These correlations also indicate that the artifacts associated with
periodicity errors described in Section 2 are not the only source of variability in the reconstructed
signal that affect periodicity RMSE.

I APPROXIMATE SPEED COMPARISON WITH OTHER MODELS

We provide an approximate comparison of the inference speed of CARGAN relative to WaveNet,
WaveGlow, MelGAN, and HiFi-GAN (see Table 10). To compute speed values for CARGAN, we
assume linear relationship in both CPU and GPU computation speed between the benchmarking
conditions used in HiFi-GAN (Kong et al., 2020) and the conditions described in Section 5.3, where
the slope is computed via the relative speeds of HiFi-GAN between benchmarks. This means that
the values for CARGAN are not the result of properly controlled benchmarking, and should only be
used as an illustrative guide.

Method GPU (RTF)↑ CPU (RTF)↑
HiFi-GAN 167.900 1.43
CARGAN 9.937 0.53
WaveNet (MoL) 0.003 –
WaveGlow 22.800 0.21
MelGAN 645.730 6.59

Table 10: Approximate time benchmarking of some recent waveform synthesizers. Real-time fac-
tor (RTF) is the number of seconds of audio that can be generated per second. Values other than
CARGAN are from Table 1 in the original HiFi-GAN paper.

J MUSIC EXPERIMENTS

To show how our model can be adapted to domains other than speech, we apply our proposed model
to spectrogram inversion of music. We train on a random 80% of the stems of the MUSDB-HQ
dataset (Rafii et al., 2019). If we use the same hyperparameters as we used for speech data for CAR-
GAN (a chunk size of 2048 with 512 previous samples used as autoregressive conditioning) we find
that the resulting audio contains significant degradations. We hypothesize that this is due to the
music dataset containing low frequencies, long reverberation, and polyphony. To handle lower fre-
quencies and long reverberation, we increase the number of previous samples used as conditioning
to 16384 samples, which greatly extends the receptive field. Increasing the size of the autoregressive
conditioning decreases the feature matching loss. We increase the weight on the feature matching
loss from 7 to 21 to compensate. We call this model CARGAN-16k.

We provide listening examples on held-out data from MUSDB-HQ on the companion website.
We also design three simple experiments to evaluate the ability of HiFi-GAN, CARGAN, and
CARGAN-16k to model low frequencies, reverb, and polyphony. To probe the ability of the models
to learn accurate low-frequency information, we pass as input a repeated kick drum sample while
gradually increasing the center frequency of a high-pass filter. We repeat the kick drum sample four
times. We turn off the high-pass filter on the first repetition, and thereafter use center frequencies of
30, 60, and 90 Hz. The Q-factor of the filter is fixed at 1. In Figure 5, we see that HiFi-GAN ig-
nores the high-pass filter and overemphasizes low frequencies, while CARGAN and CARGAN-16k
exhibit low-frequency energy closer to ground truth.

To test the ability of the models on reverberant audio, we use a repeated snare drum sample with
gradually increasing decay time. We repeat the snare sample five times. We turn off the reverb on
the first repetition, and thereafter use decay times of 250 ms, 500 ms, 1 second, and 2 seconds. In
Figure 6, we see that all models are capable of modeling the reverb in this simple example. How-
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ever, HiFi-GAN and CARGAN both overemphasize the high frequencies of the transient relative to
CARGAN-16k and the ground truth audio.

To test the ability of the model to generate polyphonic audio, we use a MIDI piano instrument play-
ing a C chord with a gradually increasing number of notes. In Figure 7, we see that all models are
capable of generating polyphonic audio. However, they exhibit different artifacts: HiFi-GAN ex-
hibits a wide vibrato that indicates low pitch accuracy, while CARGAN and CARGAN-16k exhibit
boundary artifacts that appear as repeated clicks. Audio for all experiments in this section can be
found on the companion website.

Figure 5: Spectrogram visualizations for our low frequency modeling experiment on a repeated
kick drum sample with a gradually increasing center frequency on a high-pass filter. Comparing
the lowest frequencies of each transient shows that CARGAN-16k is most capable of modeling the
effect of this high-pass filter.
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Figure 6: Spectrogram visualizations for our reverb modeling experiment on a repeated snare sample
with a gradually increasing reverb decay time. All models are capable of reproducing reverb in this
simple case. Comparing the high-frequencies of each transient shows that CARGAN-16k is most
capable of accurately modeling the high-frequencies.

Figure 7: Spectrogram visualizations for our polyphonic modeling experiment on a MIDI piano
instrument with a gradually increasing number of notes. HiFi-GAN exhibits a strong vibrato that is
easier to hear than to see on a spectrogram. CARGAN and CARGAN-16k exhibit periodic boundary
artifacts which are clearly visible in the spectrogram.
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